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Abstract—Functioning as an intermediary between tenants
and cloud providers, cloud service brokerages (CSBs) can bring
about great benefits to the cloud market. CSBs buy the cloud
resources, i.e., servers, with lower prices from cloud providers
and sell the resources to the tenants with higher prices. To
maximize its own profit, a CSB may distribute tenants’ requests
to the clouds that waste energy resources. However, as energy
costs of cloud computing have been increasing rapidly, there
is a need for cloud providers to optimize energy efficiency
while maintain high service level performance to tenants, not
only for their own benefit but also for social welfares (e.g.,
protecting environment). Thus, for green cloud companies, two
questions have arisen: 1) under what pricing policies from the
cloud providers to the CSB, a profit-driven CSB is willing
to minimize the total cloud energy cost while satisfy tenant
demands and 2) how should a CSB distribute tenants’ demands
to achieve this objective? To address question 1), we find a
pricing policy for cloud providers such that maximizing CSB’s
profit is equivalent to minimizing cloud providers’ energy cost.
To address question 2), we first devise a greedy solution, and
then propose an approximation algorithm with a constant
approximation ratio. Both simulation and real-world Amazon
EC2 experimental results demonstrate the effectiveness of our
pricing policy to incentivize CSBs to save energy for cloud
providers and the superior performance of our algorithms in
energy efficiency and resource utilizations in comparison with
the previous algorithms.

Keywords-cloud service brokerages; pricing policy; approxi-
mation algorithm

I. INTRODUCTION

Though cloud computing is still in its relative infancy, it

has earned rapid interest and adoption due to its advantages.

Cloud tenants (e.g., DropBox) purchase cloud computing
services from cloud providers (e.g., Amazon, Microsoft
Azure). As innovative approaches continue to emerge in

cloud computing, it is becoming clear that simple cloud

interoperability between cloud tenants and cloud providers is

often neither realistic nor the most advantageous. Currently,

if a cloud tenant wants to use the clouds in multiple cloud

providers, the tenant needs to negotiate multiple contracts

with the cloud providers, which results in multiple payments,

multiple data streams, and multiple providers to check up

on. Then, tenants are faced with a problem of how to make

the services from multiple cloud providers’ work together to

Tenants

Cloud
Providers

Cloud 1 Cloud 2 Cloud N

...

Cloud
Service
Brokerage

Provide performance
guarantee to tenants

...
tenant 1 tenant 2 tenant M

Increase resource
efficiency for cloud
providers

request

purchase

Figure 1. Cloud service brokerage.

gain maximum profit and efficiency. However, determining

the most advantageous ways to procure, implement and

manage cloud technologies to handle this problem presents

complex issues to cloud tenants. Under this circumstance,

cloud service brokerages (CSBs) have arisen in the market
[6], [8], [9].

As shown in Fig. 1, CSB is a third-party individual or

business that acts as an intermediary between the tenants

and the cloud providers. CSBs buy the cloud resources, i.e.,

servers, with lower prices from cloud providers [14] and sell

the resources to the tenants with higher prices. In addition,

CSBs can enhance the resource utilization of cloud services

for tenants because they can monitor, track, protect and

enforce company policies across all demands from different

tenants (a demand can be a virtual machine (VM) in the

IaaS (Infrastructure as a Service) model or a video game in

the SaaS (Software as a Service) model). Thus, CSBs can

make it easier, less expensive, safer and more productive for

tenants to use cloud resources, particularly when tenants’

requests span multiple and diverse cloud service providers.

To maximize its own profit, a CSB may distribute tenant

requests to clouds which does not efficiently use cloud

resources, since maximizing the CSB’s profit does not mean

minimizing the cloud providers’ cost [14]. However, how

to motivate a CSB to reduce energy cost (or cost for

short) of cloud resources for green computing while satisfy

all tenant requests has not been addressed. Indeed, energy
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consumption has been one of the most important issues in

cloud computing [14]. The electricity consumption of clouds

globally is 623 Billion kWh in 2007 and is projected to be

1,963 Billion kWh 2020, which will generate 1034 MtCO2e

(Gigatonne Carbon Dioxide Equivalent) [12]. As energy

costs of cloud computing have been increasing rapidly, there

is a need for cloud providers to optimize energy efficiency

while maintain high service level performance to tenants,

not only for their own benefit but also for social welfares

(e.g., protecting environment) [14]. To address this need, we

attempt to explore the pricing policy of the cloud providers

on CSBs to incentivize CSBs to save cloud energy cost and

propose methods for a CSB to allocate tenants demands to

the servers to minimize cloud energy cost. Specifically, we

study two questions below:

Q1: Under what pricing policies of cloud providers, when a
CSB maximizes its profit, it can also minimize the total
energy cost of all cloud providers.

Q2: How should a CSB distribute tenants demands to cloud
providers to minimize total energy cost and meanwhile
satisfy tenants demands?

To address Q1, we first formulate two problems for CSBs:

the Maximum CSB Profit problem (MCP) that aims to

maximize a CSB’s profit, and the Min-energy CSB Demand

allocation problem (MCD) that aims to minimize cloud

providers’ energy cost when allocating tenant demands to

servers. By analyzing these two problems, we find a pricing

policy for cloud providers to CSBs, such that MCP is

equivalent to MCD, i.e., maximizing a CSB’s profit is

equivalent to minimizing cloud providers’ energy cost. In

other words, under this pricing policy, even a profit-driven

CSB will automatically save energy for cloud providers

when maximizing its own profit.

To address Q2, we need to find the optimal solution of

MCD, which can be regarded as a generalized version vector

bin packing (VBP) problem [18], [19]. However, MCD

cannot simply be solved using the existing VBP solutions

(e.g., Best Fit Decreasing algorithm (BFD) [18], [19]),

because unlike VBP, demands and servers (bins) in MCD

have different requirements and capacities for each type of

resource, and the energy costs for different types of servers

are also different. To solve MCD, we first propose a greedy

algorithm based on BFD, namely Balance Fit Decreasing

algorithm (BaFD). It aims to balance each server’s utilization

on different types of resources when selecting a server for

a demand because one resource bottleneck prevents fully

utilizing other resources. We then propose an approximation

algorithm for MCD using linear programming relaxation (or

LP-relaxation). We summarize our contributions in below:

(1) We find a resource pricing policy for cloud providers to

incentivize CSBs to minimize the cloud energy cost.

(2) We design a greedy algorithm (BaFD) and an approxi-

mation algorithm for a CSB to minimize cloud energy cost

servers, and analyze algorithm performance.

(3) We test the performance of BaFD and the approximation

algorithm in comparison with the previous algorithms by

both trace-driven experiments on a simulator and on Amazon

EC2 [1].

The remainder of this paper is organized as follows.

Section II and Section III study the pricing problem and

demand allocation problem for CSBs, respectively. Section

IV evaluates the performance of our proposed schemes in

comparison with other schemes. Section V presents related

work. Section VI concludes this paper with remarks on our

future work.

II. PRICING POLICY FOR CSBS

Our objective in this paper is to minimize the energy

consumption of cloud servers. However, in reality, CSBs

are always profit-driven and they do not need to minimize

the energy cost from cloud providers. To maximize its own

profit, a selfish CSB may distribute tenants’ demands to

clouds, which cannot fully utilize the energy resources [14].

Even if a CSB is willing to save energy for cloud providers,

it cannot get the information of servers’ energy cost, which

becomes an obstacle for the energy saving. In this section,

we discuss how the cloud providers design a pricing policy

to CSBs to incentivize profit-driven CSBs to minimize the

total energy cost of multiple clouds while accommodate all

tenant demands, even if CSBs are not aware of the energy

cost of servers in clouds.

Consider a scenario composed of a CSB, M demands

V = {v1, ..., vM} from all the tenants, and N heterogenous

servers S = {s1, ..., sN} provided by L cloud providers

C = {c1, ..., cL}. Here, a demand is defined as a tenan-
t’s request that can only be allocated to a single server.

Hence, the applications that require multiple servers can

be considered as the combinations of multiple demands.

Since the resource consumptions for different demands are

different, we can characterize each demand vl by a K-

dimensional vector wl = [wl,1, ..., wl,K ], called consump-
tion vector, where K denotes the number of different types

of resources (e.g., CPU, memory, and disk bandwidth). Here,

each dimension wl,j represents the demand’s consumption

on type-j resource. A tenant may have multiple demands.

Similarly, each server si can be characterized by a K-

dimensional capacity vector bi = [bi,1, ..., bi,K ]
T, where

each dimension bi,j represents the server’s capacity on type-
j resource. We normalize the entries of each wl and each

bi through dividing wl,k and bi,k by wmax = maxl,k wl,k

and bmax = maxi,k bi,k in all demands and all servers,

respectively. We assume that the energy cost of each server

is the same when it is used regardless of its resource

utilization [17], and we denote the energy cost of each

si by ai. As in [27], we also assume that the servers in

each cloud provider are homogeneous. That is, they have
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the same capacity vector and energy cost. We assume that

the CSB knows the consumption vectors of all the tenants

and the tenants’ consumption vectors are all fixed [14].

We use indicator variable xi to represent whether si is
purchased by the CSB: if yes, xi = 1; otherwise xi = 0.
We use indicator variable yi,l to denote whether demand
vl is distributed to cloud provider ci: if yes, yi,l = 1;
otherwise yi,l = 0. Like the pricing policy in IBM [11],

in this paper, each cloud provider charges the CSB based

on the number of servers. Let zn denote the total number of
servers that the CSB bought from cloud provider cn, then
zn =

∑
si∈Sn

xi. Then, the money that the CSB needs

to pay to cn can be represented by Ln(zn), where each
Ln(·) is a concave and twice differentiable pricing function
[14]. Cloud providers provide the information of the pricing

policy and the capacity vectors of their servers to the CSB

when the CSB buys servers [14]. Recall that each demand

has a consumption vector with the consumption for K types

of resources. Then, we formally formulate the maximum

profit problem of the CSB, namely Maximum CSB Profit
(MCP) problem, as follows.

min f ′(z) =
∑
n

Ln(zn) (1)

s.t. gi,k(x,yi) =
∑
l

yi,lwl,k − xibi,k ≤ 0, ∀i, k (2)

hl(yl) =
∑
i

yi,l − 1 = 0, ∀l (3)

xi ∈ N, ∀i, yi,l ∈ {0, 1}, ∀i, l (4)

where z = [z1, ..., zL], x = [x1, ..., xN ]
T, yl =

[y1,l, ..., yN,l]
T and yi = [yi,l, ..., yi,M ]. Constraint (2)

ensures that for each cloud provider, the capacities of the

purchased servers are enough for its allocated demands.

Constraint (3) ensures that each demand is allocated to one

server. MCP is an integer non-linear programming problem,

which can be solved by subgradient method or interior point

method [5].

Similarly, we can formulate the problem that CSB aims

to minimize the energy cost, called the Min-energy CSB

demand allocation (MCD) problem, which is an integer

linear programming (ILP) problem:

min f(x) =
∑
i

aixi (5)

s.t. Constraints (2), (3), and (4) in MCD.

zn =
∑

si∈Sn

xi, ∀n. (6)

If MCP is equivalent to MCD, then when the CSB strives to

maximize its own profit, it also minimizes the total energy

cost of all clouds to accommodate all tenant demands, i.e.,

the CSB becomes cooperative. However, MCD is not equiv-

alent to MCP in general because their objective functions

are different. This leads to a question: what pricing policies

(i.e., Ln(·)) make MCP equivalent to MCD?
In the following, we answer this question by Theorem 2.1,

which gives a necessary and sufficient condition to make the

objective functions of MCD and MCP equivalent. To help

prove Theorem 2.1, we first introduce Lemma 2.1.

Lemma 2.1: The objective function f ′(z) is concave.
Proof: Recall that f ′(z) =

∑
i Ln(zn). Then, the

Hessian matrix of f ′(z) is

Hf ′(z) =

⎡
⎢⎢⎣

∂L2(z)
∂z21

· · · ∂L2(z)
∂z1∂zL

...
. . .

...
∂L2(z)
∂zL∂z1

· · · ∂L2(x)
∂z2L

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

∂L2(z)
∂z21

· · · 0

...
. . .

...

0 · · · ∂L2(z)
∂z2N

⎤
⎥⎥⎦

which is a diagonal matrix. Since each Ln(zn) is concave,
∂2Li(zn)

∂z2n
≤ 0. Hence, Hf ′(z) is negative semi-definite [5],

which implies that f ′(z) is a concave function.
Theorem 2.1: MCP and MCD have the same optimal

solution iff Ln(z) = βanz, ∀i where β > 0 is a constant.
Proof: Let H∗ and C∗ be the hyperplane and the

hypersurface passing through the optimal point z∗ =
[z∗1 , ..., z∗L], respectively: H∗ :

∑
n anzn − c∗A = 0 and

C∗ :
∑

n Ln(zn) − c∗L = 0, where c∗A =
∑

n anz∗n and

c∗L =
∑

n Ln(z
∗
n). Let Sz denote the feasible region of

z. Because z∗ is the optimal solution of MCD, then for
each z′ = [z′1, ..., z′L] ∈ Sz, we have

∑
i anx′n ≥ c∗A, n =

1, 2, ..., L. Let zn = znen be the point that H∗ intersects
with zn axis, respectively, where e

n is a N dimension vector

with all entries equaling 0 except the nth entry equaling 1.

Then, z can be represented as a linear combination of z1, ...,
zL: z∗ =

∑
n λnz

n, where
∑

n λn = 1 and each λn ≥ 0.
Similarly, let ẑn = znên be the point that C∗ intersects
with xn axis (n = 1, 2, ..., L), respectively. Since f ′(z) is
concave (according to Lemma 2.1), we can derive that

f ′ (z∗) = f ′
(∑

n

λnz
n

)
(7)

≥
∑
n

λnf ′ (zn) , (8)

which implies that
∑

n λnf ′ (zn) ≤ c∗L. On the other hand,∑
n

λnf ′ (ẑn) =
∑
n

λnc∗L (9)

= c∗L. (10)

Accordingly,
∑

n λnf ′ (zn) ≤ ∑
n λnf ′ (ẑn).

Now, we need to prove that ẑn = zn ∀n, which makes C∗

a hyperplane and Ln(z) = βanz, which completes the proof.
For the sake of contradiction, suppose that ∃n s.t. ẑn �= zn,
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then ∃j s.t. ẑj > zj+σ, where σ > 0. Then, we can always
find a new instance of MCD that has feasible region � 1σ 	·Sz.
In this newly constructed instance, the optimal solution of

both MCD and MCP is � 1σ 	z∗, and f ′ (ẑn) intersects the zj
axis at point � 1σ 	ẑjej . Because ẑj > zj + σ,⌈

1

σ

⌉
ẑje

j >

⌈
1

σ

⌉
xj +

⌈
1

σ

⌉
σ ≥

⌈
1

σ

⌉
zj + 1, (11)

which implies there may exist a feasible point z̃jej s.t.⌈
1

σ

⌉
zj ≤ z̃j <

⌈
1

σ

⌉
ẑje

j and zj ∈ Z. (12)

Let z̃jej be a feasible point in the newly constructed

instance, then the second problem has a new optimal solution

because

fj(z̃
j) < fj

(⌈
1

σ

⌉
ẑj

)
=

⌈
1

σ

⌉
c∗L, (13)

which is a contradiction.

According to Theorem 2.1, to encourage a profit-driven

CSB to minimize the total energy cost of multiple clouds, the

following pricing policy should be used: the price of each
server should be proportional to its energy cost. Notice
that Theorem 2.1 not only provides a feasible pricing policy,

but also excludes all other pricing policies: If a pricing policy

is not proportional to the energy cost, it cannot encourage a

profit-driven CSB to minimize the energy cost.

Given the pricing policy, the MCD problem for CSB can

be considered as a general version of the traditional demand

allocation problem, which is equivalent to the VBP problem

[6]. However, the methods for VBP, like FFD and BFD,

cannot be directly applied to MCD, because in MCD the

servers are chosen among multiple cloud providers, and it is

non-trivial to find an optimal solution among heterogonous

servers with different capacities and different prices. For

example, some servers serve the requests more efficiently,

but their prices are higher, so they may not be the optimal

choice. In the following part, we will introduce how to solve

this new demand allocation problem.

III. MIN-ENERGY CSB DEMAND ALLOCATION

In this section, we address Q2 in Section I, i.e., how a

CSB distributes its tenants requests to achieve the objective

of minimizing the energy cost. Due to the hardness of this

problem, we then propose two time-efficient algorithms: a

greedy algorithm, called Balance Fit Decreasing (BaFD),

based on the Best Fit Decreasing (BFD) algorithm [18], [19],

and an approximation algorithm through linear programming

(LP) relaxation.

A. A Heuristic: Balanced Best Fit Decreasing

When the servers in all different cloud providers have the

same capacity for different resources, b1,k = b2,k = ... =
bN,k ∀k, MCD maps to the classical optimization problem

Table I
NOTATIONS

Symbol Description

C The cloud provider set

cm The mth cloud provider
S The server set

si The ith server
V The demand set

xi Variable indicating whether si is purchased
yi,l Variable indicating whether vl is allocated to si
M The number of demands

vl The lth tenant demand
N The number of servers

ai The energy cost of si
bi,k The capacity of resource k of si
wl,k The demand of resource k of vl

Storage CPU Memory Storage

CPU Memory Storage

Server 1 Server 2

Demand 1

40 units
10 GB

4000 GB
30 units

15 GB 4000 GB

15 units
8 GB

4000 GB

CPU Memory

CPU Memory Storage
Demand 2

4 GB

3400 GB31 units

BFDSum BaFD

Figure 2. Demand allocation in BFDSum and BaFD.

called vector bin packing (VBP) [3], where the servers are
conceived as bins and the demands as objects that need to

be packed into the bins. Since vector bin packing is NP-

hard, MCD is also NP-hard. Due to the hardness of MCD,

we cannot find an optimal solution for this problem. Hence,

we turn our attention to designing a time-efficient heuristic

algorithm for MCD, called Balance Fit Decreasing (BaFD)

algorithm. BaFD is improved from the existing algorithm

Best Fit Decreasing (BFD) algorithm, a natural heuristic

for one-dimensional bin packing problem. BFD orders the

objects in decreasing order of size. Starting from the first

object, it iterates over the bins, finds out the bin that has the

least amount of space left after accommodating the object.

It then proceeds to the second object, and repeats the same

procedure until all the objects are packed.

As mentioned above, MCD is a generalized form of

the bin packing problem, and MCD’s problem instance is

constrained by more than one dimension and each bin (serv-

er) has different capacity vector and each object (demand)

has different consumption vector. Hence, we need some

generalization of BFD for multiple dimensions. A traditional
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approach such as BFDSum [17] (or BFDProd) is to map

capacity vector into a single scalar (called volume) and map
consumption vector into a single scalar (called weight) using
the sum (or product) function, and then perform a one-

dimensional BFD algorithm on the volumes and weights.

However, a single scalar cannot accurately reflect a server’s

ability to fit a demand because one type of resource may

become the bottleneck of a server which makes other avail-

able resources unable to be used. As shown in Fig. 2, the

maximum CPU, memory, and storage of all the servers are

40 units, 15GB, and 4000GB, respectively. The normalized

capacity vectors of s1 and s2 are [1, 0.6, 1] and [0.75, 1, 1],
respectively (the three entries in the vector denote CPU,

memory, and storage, respectively). The volume of Server1

and Server2 are 2.6 and 2.75, respectively, and the weight of

Demand1 and Demand2 are 1.905 and 1.895, respectively.

BFDSum allocates Demand1 first since Demand1 has a

higher weight than Demand2, and then selects Server1 be-

cause it has less volume left after accommodating Demand1

than Server 2. Then, Demand2 cannot be allocated to either

Server1 or Server 2. Obviously, a better schedule is to

allocate Demand1 to Server 2 and Demand 2 to Server1.

BFDSum has worse performance because it ignores that

Server2’s CPU is the bottleneck for running a demand.

To avoid the bottleneck of one type of resource in each

server, BaFD aims to balance the resource utilizations of

different resources in each server to increase the server’s

“volume” for allocating more demands. To this end, in each

iteration, say the nth iteration, BaFD attempts to minimize

the variance of the allocated resources of the selected server,

denoted by s(n),

min Var(u(n)) =
∑
k

(
u
(n)
k − u(n)

)2
, (14)

where u
(n)
k represents the utilization of type-k resource of

server s(n), u(n) represents the mean value of u
(n)
1 , ..., u

(n)
K ,

and u(n) = [u
(n)
1 , ..., w

(n)
K ]. Accordingly, when selecting an

object for a bin, BaFD tries to place the object (demand)

that can balance the resource of a given bin (server).

Before introducing the details of BaFD, we first present

some definitions. Let V
(n)
a and V

(n)
u represent the set of

demands allocated in the nth iteration and the set of demands

unallocated after the nth iteration, respectively. We define

the efficiency of a server si, denoted by e(si), by the ratio of
the sum of the weights of all VMs placed in this server to its

energy cost: e(si) =
∑

vl∈si
w(vl)

ai
. A higher efficiency of a

server means it can support more VM resource consumption

per unit energy cost. To minimize the total energy cost when

allocating a given group of VMs, BaFD tries to find the

servers with higher efficiency values.

The basic idea of BaFD is to iteratively find the “best

fit” demands that make each server’s resource utilization

be most balanced (according to Equ. (14)), and then picks

VM1 VM2 VM3 VM4 VM5

VM1

VM2

VM2

VM3

VM4 VM4

VM5

sever 1 sever 2 sever 3

VM1 VM5

VM2

VM3

VM4

sever 1 sever 2 sever 3

Part 1

Part 2

Figure 3. An example of the BaFD algorithm.

up the server (along with the demand allocation) with the

highest efficiency among all servers. Here, we pick up the

server with the highest efficiency, because our goal is to

minimize the total server cost, thus in each iteration we try to

accommodate the demands by the server that has the smallest

cost per unit weight. To find the “best fit” demands for a

given server, BaFD iteratively picks up the demand that leads

to the highest efficiency of the server until its remaining

resources cannot hold any existing unallocated demand.

In each iteration, there are two parts. Part 1 temporarily

determines the VMs that can be allocated to each server

to fully utilize its resources. Part 2 chooses the server that

leads to the highest efficiency value for the actual demand

allocation.

Part 1 (line 5-10). For each server si, iteratively choose the

demand from V
(n)
u that best balances si’s resource utilization

by Equ. (14) and temporarily allocate it to si. Repeat this
process until no demand can be fitted into si due to its
resource limit. Go to Part 2.

Part 2 (line 11-16). Among all the servers with the tempo-
rary demand allocation in Part 1, select the server si with
the highest efficiency e(si). Then, si is selected as s(n) and

V
(n)
a equals all the demands fit into si in Part 1. Remove all

the demands in V
(n)
a from V

(n)
u . Go to the next iteration.

As Fig. 3 shows: in part 1, Demand1 and Demand2

are iteratively selected among all demands that lead to the

highest efficiency of server 1 in each step, so they are put

into server 1. Similarly, Demand2, Demand3, and Demand4

are put into server 2; Demand4 and Demand5 are put into

server 3. In part 2, we find that server 2 has the highest

efficiency among all servers. Then, Demand2, Demand3,

and Demand4 are allocated to server 2, while Demand1 and

Demand5 remain unallocated.

B. Approximation Algorithm
The greedy algorithm can efficiently get a suboptimal

solution for MCD, but it has no performance guarantee for

its solution, i.e., how the worst result can be compared
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Algorithm 1: Pseudocode of the BaFD algorithm.

1 // Initialization setup

2 Initialize V
(n)
a ← φ and V

(n)
u ← V , n = 1;

3 while there are unallocated demands do
4 for each cloud ci do
5 Pick one server si;
6 while si still has enough resource for

vl ∈ V
(n)
u do

7 j ← argmax
vl∈V (n)

u
Var(u(n));

8 Put vj into si;

9 j ← argmaxi e(si);
10 s(n) ← sj // Select sj as the nth

server;

11 V
(n)
a ← VMs in sj ;

12 Remove all the demands in V
(n)
a from V

(n)
u ;

13 n+ = 1;

to the optimal solution. Hence, in this section, we devise

an approximation algorithm using LP-relaxation [5]. LP-

relaxation is a technique that relaxes an NP-hard LIP into

a related LP problem that is solvable in polynomial time,

and the solution to the relaxed LP can be used to gain the

solution to the original ILP. To be more specific, first, we

get a relax-version of MCD, called MCD-relaxation (MCD-

RL) by relaxing the feasible region of MCD’s solution

from integers ([x,y] ∈ {0, 1}N+MN ) to real numbers

([x,y] ∈ [0, 1]N+MN ). Then, MCD-RL becomes an LP

problem, which can be solved efficiently by simplex method

[10]. By combining and rounding the solution of MCD-

RL, we get the solution of MCD. We also show that the

solution of MCD-RL has a constant approximation ratio to

the solution of the MCD problem? (Theorem 3.1).

1) MCD-Relaxation and its Rounded Solution: In this

part, we propose our centralized approximation algorithm.

Definition 3.1: MCD-RL is defined as MCD such that

Constraints (4) and (4) in MCD are relaxed to (1) xi ∈
[0, 1] ∀i and (2) yi,l ∈ [0, 1] ∀i, l, respectively.
In the following, we use [x,y], [x̂, ŷ], and [x∗,y∗] to

distinguish the optimal solution of MCD-RL, the rounded

solution of MCD-RL, and the optimal solution of MCD.

Since MCD-RL is an LP problem, using simplex method,

we can get MCD-RL’s optimal solution [x,y]. Note that
[x,y] is not necessarily integral. Since the feasible region
of MCD-RL is larger than the feasible region of MCD, we

have ∑
i

aixi ≤
∑
i

aix
∗
i . (15)

The rounded solution [x̂, ŷ] is derived from [x,y] (the
optimal solution of MCD-RL), hence [x̂, ŷ] is not necessarily

optimal for MCD. Therefore,
∑

i aix
∗
i ≤ ∑

i aix̂i. Ac-

cordingly, we have the following relationship among [x,y],
[x̂, ŷ], and [x∗,y∗]:∑

i

aixi ≤
∑
i

aix
∗
i ≤

∑
i

aix̂i. (16)

Now, we turn our attention to getting the rounded solution

[x̂, ŷ] from [x,y]. Rounding y is straightforward: for each

vector yl = [y1,l,...,yN,l], we set each ŷi,l by 1 if yi,l

= max{y1,l, ...,yN,l}, or 0 elsewhere [5]. We also need to
update x to x̃ to ensure that

∑
l ŷi,lwl,k − x̃ibi,k ≤ 0, ∀i, k

is satisfied (Constraint (2) in MCD). Thus, we update x to

x̃ by

x̃i = max
k

{∑
l ŷi,lwl,k

bi,k

}
. (17)

What remains to be done is to round the entries in x̃ to

generate x̂. A typical approach to get x̂ is directly rounding
up x̃. For example, if x̃1 = 0.3, then x̂1 = �0.3	 = 1.
However, directly rounding up x̃ may be wasteful if each

x̃i is much smaller than 1. Consider the following scenario:

s1 and s2 have the same capacity vector and cost a1, and
x̃1 = 0.3 and x̃2 = 0.4. Then, by up rounding, we get
x̂1 = �0.3	 = 1 and x̂2 = �0.4	 = 1, which implies the cost
is 2a1. However, since x̃1+ x̃2 = 0.7 < 1, we also combine
the demands of s2 and s1, and put the demands into s1,
which implies the cost is a1, better than directly rounding
up. Hence, combing entries in x̃ can further decrease the

cost than directly rounding up. Note that if si and sj are
two different types of servers, we cannot combine x̃i and

x̃j because the combined value cannot reflect the resource

utilization of either si or sj if we put all demands in one of
them (Constraint (2) in MCD). Thus, the combination can

only be executed among the same type of servers. Therefore,

we first partition x̃ into a set of subvectors x̃1, ..., x̃L,

such that the servers corresponding to the entries in each

x̃n (n = 1, 2, ..., L) are from the same cloud provider cn,
i.e., have the same vector capacity and cost. Then, in each

x̃n, we combine as more non-zero entries as possible with

the condition that the sum of the combined entries does not

exceed 1. The combining process can also be considered as

putting a set of objects with size ranging from [0, 1] into
minimum number of bins with size 1, which is a typical

bin packing problem, and can be solved by BFD efficiently.

After combining the entries in x̃, we get a new vector

x′ = [x′1, ..., x′N ]. Consequently, we round up each entry
in x′ to get our rounded solution x̂ = [x̂1, ..., x̂N ], in which
x̂i = �x′i	 1 ≤ i ≤ N .

Lemma 3.1:
∑

si∈Sn
x̂i < 2

∑
si∈Sn

x̃i + 1, where Sn

denotes the set of all the servers in cn.
Proof: First, we claim that no pair x′i and x′j s.t. x′i ≤ 1

2

and x′j ≤ 1
2 exist in x

′; otherwise we can combine x′i and x′j .
For each x′i > 1

2 , we have x̂i = �x′i	 < 2x′i. For each x̃n,

combining its entries does not change the sum of the entries,
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i.e.,
∑

si∈Sn
x′i =

∑
si∈Sn

x̃i. When there is no x′i ≥ 1
2∑

si∈Sn

x̂i =
∑

si∈Sn

�x′i	 (18)

< 2
∑

si∈Sn

x′i (19)

= 2
∑

si∈Sn

x̃i. (20)

When there exists x′j ≥ 1
2 , then∑

si∈Sn

x̂i =
∑

si∈Sn

�x′i	 (21)

< 2
∑

si∈Sn\sj
x′i + �x′j	 (22)

= 2
∑

si∈Sn\sj
x̃i + 1 (23)

< 2
∑

si∈Sn

x̃i + 1. (24)

Theorem 3.1: The approximation algorithm achieves a

constant approximation ratio.

Proof: First, by Lemma 3.1

∑
i

aix̂i =
∑
n

(
an

∑
si∈Sn

x̂i

)
(25)

<
∑
n

(
an

(
2

∑
si∈Sn

x̃i + 1

))
(26)

= 2
∑
i

aix̃i + C (27)

where C =
∑

n an is a constant. Also, based on Equ. (17),

we can derive that∑
i

aix̃i =
∑
i

aimax
k

{∑
l ŷi,lwl,k

bi,k

}

≤
∑
i

ai

∑
l

δi,lŷi,l (δi,l = max
k

{
wl,k

bi,k

}
)

≤
∑
l

βl

∑
i

ŷi,l (βl = max
i

{aiδi,l})

≤ Δ
∑
i

ai

∑
l

yi,lwl,1

bi,1
(Δ = max

i,l,k

{
bi,1βl

wl,1ai

}
)

≤ Δ
∑
i

aixi (28)

Based on Equ. (25), when
∑

i aix̃i is large,∑
i aix̂i/

∑
i aix̃i is asymptotically approximate to 2,

and based on Equ. (25) and Equ. (28), then we get∑
i aix̂i < 2

∑
i aix̃i ≤ 2Δ

∑
i aixi. Consequently, from∑

i aixi ≤
∑

i aix
∗
i ≤ ∑

i aix̂i (Equ. (16)), we can derive

that the approximation ratio is upper bounded by 2Δ, which
is a constant.

IV. PERFORMANCE EVALUATION

In this section, we conducted both simulation and real-

world experiments (on Amazon EC2 [1]) driven by the

Google Cluster [7] real trace. The Google Cluster trace

records the CPU and memory resource utilization on a

cluster of about 11000 VMs from May 2011 for 29 days in

every 10 seconds. In Google Cluster trace, the capacity of

the CPU and memory of all the servers are not provided [7].

We evaluated the effectiveness of our demand allocation

algorithms (BaFD and the approximation algorithm (or

Approx)) in comparison with two typical demand allocation

algorithms, BFDSum [17] and Sandpiper [24]. In Sandpiper,

all servers’ capacity vectors and demands’ consumption

vectors are mapped into singular scales, called volumes and

weights, respectively. More specifically, Sandpiper calcu-

lates each server’s volume and each demand’s weight by

Voli =
∏

k
1

1−bi,k
and Weil =

∏
k

1
1−wl,k

, respectively.

We observed that the memory requirements from de-

mands do not exceed servers’ memory capacities in our

experiments. We set two types of servers and each types

has 50 servers. The first type of servers have the same

CPU and memory capacity as in the traces. The memory

capacity, CPU capacity and energy cost of the second type

of servers are 1, 1.2 times and 1.1 times of those of the first

type, respectively. We normalize the CPU capacity, memory

capacity and energy cost of the first type of server to 1,

and hence the second type of server have CPU capacity,

memory capacity and energy cost equal to 1.2, 1, and 1.1,

respectively. The metrics we measured include:

In the Google Cluster trace, the CPU and memory con-

sumption fluctuate over time, which implies that the resource

requirement for each VM should be appropriately predeter-

mined for demand allocation so that the real requirements

can be satisfied but are close to the determined require-

ments most of the time. As Service-Level Agreement (SLA)

usually specifies a high probability that the real demands

must be satisfied, we aim to satisfy all the demands with

a high probability (i.e., above 95%). Here, we use the

following method [15] to determine the consumption vector.

Let {wt
l,k|t = 1, ...., T} be the trace of type-k resource of

demand vl, then wl,k is given by: wl,k = E(w
t
l,k)+ησ(wt

l,k),
where E(wt

l,k) and σ(wt
l,k) represent the expectation and

the standard deviation of {wt
l,k}, respectively, and η is a

coefficient to determine the percentage of trace data in

{wt
l,k} that is lower than wl,k. If η = 1.28, then about 80%

trace data in {wt
l,k} is lower than wl,k [15], which means

we set SLA to 80% demand satisfaction [15]. In all our

experiments below, all algorithms achieve no less than 95%

demand satisfaction.

A. Trace-driven Simulation

Fig 4(a) shows the total server cost when the number of

demands that are required to allocated to servers was varied

from 40 to 60 with 2 increase in each step. We see that
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Figure 4. Comparison of server cost, CPU utilization and memory utilization (simulation)

the result follows Sandpiper>BFDSum> BaFD ≈ Approx.

Recall that, when selecting a server, BaFD jointly takes

into account server cost and the balance of the utilization of

different resources, while BFDSum and Sandpiper simply

map all the capacity vectors and consumption vectors to

single scalars without considering the balance. As we have

analyzed in Section III-A, balancing the resource utilization

for each server can increase each server’s remaining

capacity for allocating more demands. As for Approx,

it sets the total costs of all used servers as its objective

function, implying that Approx aims to search the demand

allocation such that the total server cost is minimized.

To achieve this goal, Approx first calculates the optimal

solution of the relaxed problem, and then rounds the optimal

solution to integers, which is still near to the optimal. Since

BaFD and Approx use less energy cost and fewer servers

to support a given amount of demands, we are interested in

checking if they generate many server overload occurrences.

We measured the CPU and memory utilizations every

10 seconds for all servers. Fig 4(b) shows the median, 5th

percentile and 95th percentile of these CPU and memory

utilizations, respectively, of the four algorithms with 40 and

50 demands. The utilization data is collected from all the

servers at each time slot. In both figures, we observe that

the median utilization follows: Sandpiper ≈ BFDSum <
BaFD ≈ Approx, which indicates our two algorithms can

more fully utilize the resources of servers and hence save

the energy cost. The reason is the same as in Fig 4(a).

We also compare the CPU and memory utilization of a

randomly selected server under different algorithms over

time in Fig 4(c) and Fig 4(d), respectively. Comparing these

two figures, we find that for bot CPU and memory resource

utilizations, Sandpiper ≈ BFDSum < BaFD ≈ Approx,

which is consistent with the results in Fig. 4(b) due to the

same reasons.

B. Trace-driven Real-world Experiments on Amazon EC2

In this section, we conducted trace-driven experiments

on Amazon EC2 [1], which is a web service that provides

resizable computing capacity in the cloud [1]. In the sim-

ulation, we calculated each server’s utilization by summing

all the traces’ resource consumption in the server. However,

in reality, the resource utilization of a server is not simply

the linear combination of the programs’ load in the server.

Hence, in this part, we ran real programs in each server

and observe the servers’ resource utilization, which more

practically reflects the performance of our methods. To

generate CPU and memory load of these programs in the

servers in Amazon EC2, we use a generator to read the

computation utilization data from the trace (Google Cluster

trace) every 10 seconds. During each CPU spinning interval

(e.g. 10 seconds), the generator generates approximately the

same CPU utilization with the value of trace data (e.g.

80%). In the following, we measure the performance of

the four algorithms implemented in Amazon EC2 with the

same metrics from the simulation in Section IV-A, and then

compare the results with the simulation results in Section

IV-A.

Fig. 5 shows the performance of the four algorithms

implemented in Amazon EC2 using Google Cluster trace.

Comparing Fig. 4 and Fig. 5, we have the following ob-

servations: (1) in both Fig. 4(a) and Fig. 5(a), the total

cost of servers follow: Sandpiper ≈ BFDSum > BaFD

≈ Approx, and (2) in all Fig. 4(b)-(d) and Fig. 5(b)-

(d), both CPU utilization and memory utilization follow

Sandpiper ≈ BFDSum < BaFD ≈ Approx. The results

in Fig. 5 demonstrate that BaFD and Approx more fully

utilize resources in each server and hence save energy cost

in Amazon EC2.

C. Comparison of Different Pricing Policies

Recall that we proved in Section II that in order to

incentivize a CSB to minimize the total server cost for

cloud providers, a cloud provider must set the price of each

server to be proportional to its cost of the total server cost.

We then measure the effectiveness of the pricing policies

on the incentives. We compare the total server cost of

three different strictly concave (non-linear) pricing functions

L(x) = x + β log(1 + x) with our linear pricing function
L(x) = βx (β = 2, 3, 4) in Fig. 6(a) and Fig. 6(b) using two
traces respectively. We find that the linear pricing function

generates the least total server cost and the cost remains

nearly the same regardless of the β. It is because that as
long as the pricing function is linear, CSB always set its
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Figure 5. Experiment on Amazon EC2.
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Figure 6. Comparison of total cost of servers for different pricing policies.

goal to minimize the cost of cloud providers (Theorem

2.1), and hence achieve the same demand allocation and

the same total energy cost of servers. We also observe

that for total cost of servers, L(x) = x + 5 log(1 + x)
is better than L(x) = x + 4 log(1 + x), which is better
than L(x) = x+ 3 log(1 + x). The pricing policy effect the
total server cost that the CSB uses because that the pricing

function determines the objective function of CSB (Equ. 1)

in the MCP problem in Section II, which further determines

the allocation strategy of the CSB. The experimental results

in Fig 6(a) and Fig. 6(b) confirm the effectiveness of our

pricing policy to incentivize CSBs to be cooperative in

minimizing the energy cost while satisfy tenants’ demands.

V. RELATED WORK

There have been rich literatures studying how to allocate

multiple demands into fewer servers to save energy. For

example, commercial products such as the VMware v-

Sphere Distributed Resource Scheduler [4] (DRS), Microsoft

System Center Virtual Machine Manager [3] (VMM), and

Citirix XenServer [2] offer VM consolidation as their chief

functionality. Research on demand allocation has generated

several clever heuristics for resource efficiency [17], [20],

[24]. Sandpiper [24] enables live migration of VMs from

overloaded hosts by taking the product of CPU, memory,

and network loads and migrating VMs to servers based

on the First Fit Decreasing (FFD) heuristic. Tang et al.
[20] proposed a demand allocation method that combines

CPU and memory consumption into a singular scalar by

calculating the ratio of these two metrics. Srikantaiah et al.
[17] proposed to use Euclidean distance between resource

demands and residual capacity as a metric for consolidation,

a heuristic analogous to Norm-based Greedy. Lee [13] et
al. addressed two fundamental issues that are critical to

the design and use of VM consolidation heuristics: 1)

how resource utilization and performance aggregate when

demands are co-hosted, and 2) how resource demands and

scarcities that span across different dimensions should be

treated. All these approaches map the capacity vector into

a single scalar without considering the resource utilization

balance of each server. Thus, they neglect the case that one

type of resource may become the bottleneck in a server,

which prevents from fully utilizing other types of resources.

A number of studies apply auctions policies to price com-

puting resources in a cloud system [21], [23], [25]. Wang

et al. [21] proposed an auction-style pricing mechanism,

which enable users to compete for cloud resources and cloud

providers to increase their own benefits. Wang et al. [23]
modeled a dynamic auction, where bidders request to occupy

a VM for more than one period, such that the auction in one

decision interval is correlated with that in another period.

Niu et al. [14] considered a model of cloud bandwidth

allocation and pricing when explicit bandwidth reservation

is enabled. Shen and Li [16] proposed network bandwidth

pricing policies to create a win-win situation, where tenants

strive to increase their own benefits in bandwidth sharing,

which also increases the utilities of cloud provider and other

tenants. Another group of works studied cloud resource

scheduling under given pricing strategies [22] [26]. Wang et
al. [22] studied how a cloud should allocate its resources be-
tween the on-demand market and the auction market. Zhang

et al. [26] proposed a dynamic scheduling and consolidation
mechanism that allocate VM resources to each spot market,

in which VMs are traded for immediate delivery to maximize

the cloud provider’s total revenue. Differently, our work

jointly models dynamical resource pricing and scheduling.

VI. CONCLUSIONS

It is critical for a Cloud Service Broker (CSB) to guar-

antee the high service level performance for their cloud

tenants and meanwhile minimize the total energy cost of

clouds for green computing when it strives to maximize

its own profit. To this end, our research is driven by two

intriguing questions: 1) under what pricing policies of the
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cloud providers, a CSB is willing to achieve the above

objective when trying to maximizing its own profit, and 2)

how should a CSB distribute tenants’ demands to multiple

cloud providers to minimize cloud providers’ energy costs

and also satisfy all tenants’ demands? To answer the first

question, we found a pricing policy from cloud providers to

the CSBs, such that maximizing a CSB’s profit is equivalent

to minimizing the energy cost of cloud providers. To answer

the second question, we formulated a demand allocation

problem, namely MCD, and proved its NP-hardness. We

then devised a greedy algorithm and further proposed an

approximation algorithm using LP-relaxation, which was

proved to have constant performance guarantee. The ex-

perimental results demonstrated the superior performance

of our algorithms in both energy efficiency and resource

utilizations, and the effectiveness of our pricing policy to

make CSBs cooperative in achieving the objective. In our

future work, we will consider the scenario where tenants’

demands change over time and each cloud provider has

heterogeneous servers with different capacities and prices.

Also, we will discuss how to apply our technique directly

between the cloud providers and the tenants, who do not

have enough information of cloud providers (i.e., servers’

capacity vectors) as CSBs.
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